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As noted in “The Pitfalls of Forecasting, Part 1,” forecasting is a balance between art and 
science. Using Risk Simulator can take care of the science, but it is almost impossible to 
take the art out of forecasting. In forecasting, experience and subject-matter expertise 
counts. One effective way to support this point is to look at some of the more common 
problems and violations of the required underlying assumptions of the data and forecast 
interpretation. Clearly there are many other technical issues, but the following list is 
sufficient to illustrate the pitfalls of forecasting and why sometimes the art (i.e., experience 
and expertise) is important. Some of these issues are covered herein and the rest are covered 
in subsequent newsletters. 

 
●   Out-of-Range Forecasts ●   Heteroskedasticity and Homoskedasticity 
●   Interactions  ●   Nonlinearities 
●   Survivorship Bias ●   Self-Selection Bias 
●   Omitted Variables ●   Control Variables 
●   Multicollinearity  
●   Error Measurements 

●   Redundant Variables 
●   Bad-Fitting Model or Bad Goodness-of-Fit 

●   Model Errors (Granger Causality and 
     Causality Loops) 
●   Seasonality and Cyclicality 

●   Structural Breaks 
●   Autocorrelation, Serial Correlation, 
      Leads and Lags 

●   Micronumerosity 
●   Nonstationary Data, Random Walks, 
     Nonpredictability, and Stochastic     
     Processes (Brownian Motion, Mean- 
     Reversion, Jump-Diffusion, Mixed  
     Processes) 

●   Specification Errors and Incorrect 
      Econometric Methods 
●   Bad Data and Data Collection Errors 
●   Nonspherical and Dependent Errors 

 
       Analysts sometimes use historical data to make out-of-range forecasts that, depending on the 
forecast variable, could be disastrous. Take a simple yet extreme case of a cricket. Did you 
know that if you caught some crickets, put them in a controlled lab environment, raised the 
ambient temperature, and counted the average number of chirps per minute, these chirps are 
relatively predictable? You might get a pretty good fit and a high R-squared value. So, the 
next time you go out and hear some crickets chirping on the side of the road, stop and count 
the number of chirps per minute. Then, using your regression forecast equation, you can 
approximate the temperature, and the chances are that you would be fairly close to the actual 
temperature. But here are some problems: Suppose you take the poor cricket and toss it into 
an oven at 450 degrees Fahrenheit. What happens? Well, you are going to hear a large “pop” 
instead of the predicted 150 chirps per minute! Conversely, toss it into the freezer at -32 
degrees Fahrenheit and you will not hear the negative chirps that were predicted in your 
model. This example illustrates the problem of out-of-sample or out-of-range forecasts.  
       Suppose that in the past, your company spent different amounts in marketing each year 
and saw improvements in sales and profits as a result of these marketing campaigns. Further 
assume that, historically, the firm spends between $10M and $20M in marketing each year, 
and for every dollar spent in marketing, you get five dollars back in net profits. Does that 
mean the CEO should come up with a plan to spend $500M in marketing the next year? 
After all, the prediction model says there is a 5x return, meaning the firm will get $2.5B in 
net profit increase. Clearly this is not going to be the case. If it were, why not keep spending 
infinitely? The issue here is, again, an out-of-range forecast as well as nonlinearity. Revenues 
will not increase linearly at a multiple of five for each dollar spent in marketing expense, 
going on infinitely. Perhaps there might be some initial linear relationship, but this will most 
probably become nonlinear, perhaps taking the shape of a logistic S-Curve, with a high-
growth early phase followed by some diminishing marginal returns and eventual saturation  

“Why is the art of forecasting 

as important as the science?” 
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and decline. After all, how many iPhones can a person own? At some point you have reached your total market potential 
and any additional marketing you spend on will further flood the media airwaves and eventually cut into and reduce your 
profits. This is the issue of interactions among variables. 
       Think of this another way. Suppose you are a psychologist and are interested in student aptitude in writing essays 
under pressure. So you round up 100 volunteers, give them a pretest to determine their IQ levels, and divide the students 
into two groups: the brilliant Group A and the not-so-brilliant Group B, without telling the students which group is 
which, of course. Then you administer a written essay test twice to both groups; the first test has a 30-minute deadline and 
the second test, with a different but comparably difficult question, a 60-minute window. You then determine if time and 
intelligence has an effect on exam scores. A well thought out experiment, or so you think. The results might differ 
depending on whether you gave the students the 30-minute test first and then the 60-minute test or vice versa. As the not-
so-brilliant students will tend to be anxious during an exam, taking the 30-minute test first may increase their stress level, 
possibly causing them to give up easily. Conversely, taking the longer 60-minute test first might make them ambivalent 
and not really care about doing it well. Of course, we can come up with many other issues with this experiment. The point 
is, there might be some interaction among the sequence of exams taken, intelligence, and how students fare under 
pressure, and so forth.  
       The student volunteers are just that, volunteers, and so there might be a self-selection bias. Another example of self-
selection is a clinical research program on sports-enhancement techniques that might only attract die-hard sports 
enthusiasts, whereas the couch potatoes among us will not even bother participating, let alone be in the mediagraphics 
readership of the sports magazines in which the advertisements were placed. Therefore, the sample might be biased even 
before the experiment ever started. Getting back to the student test-taking volunteers, there is also an issue of survivorship 
bias, where the really not-so-brilliant students just never show up for the essay test, possibly because of their negative 
affinity towards exams. This fickle-mindedness and many other variables that are not controlled for in the experiment may 
actually be reflected in the exam grade. What about the students’ facility with English or whatever language the exam was 
administered in? How about the number of beers they had the night before (being hung over while taking an exam does 
not help your grades at all)? These are all omitted variables, which means that the predictability of the model is reduced 
should these variables not be accounted for. It is like trying to predict the company’s revenues the next few years without 
accounting for the price increase you expect, the recession the country is heading into, or the introduction of a new, 
revolutionary product line.  
       However, sometimes too much data can actually be bad. Now, let us go back to the students again. Suppose you 
undertake another research project and sample another 100 students, obtain their grade point average at the university, 
and ask them how many parties they go to on average per week, the number of hours they study on average per week, the 
number of beers they have per week (the drink of choice for college students), and the number of dates they go on per 
week. The idea is to see which variable, if any, affects a student’s grade on average. A reasonable experiment, or so you 
think. The issue in this case is redundant variables and, perhaps worse, severe multicollinearity. In other words, chances are, the 
more parties they attend, the more people they meet, the more dates they go on per week, and the more drinks they would 
have on the dates and at the parties, and being drunk half the time, the less time they have to study! All variables in this 
case are highly correlated to each other. In fact, you probably only need one variable, such as hours of study per week, to 
determine the average student’s grade point. Adding in all these exogenous variables confounds the forecast equation, 
making the forecast less reliable.  
       In fact, when you have severe multicollinearity, which just means there are multiple variables (“multi”) that are 
changing together (“co-”) in a linear fashion (“linearity”), the regression equation cannot be run. In less severe 
multicollinearity such as with redundant variables, the adjusted R-square might be high but the p-values will be high as 
well, indicating that you have a bad-fitting model. The prediction errors will be large. And while it might be counterintuitive, 
the problem of multicollinearity, of having too much data, is worse than having less data or having omitted variables. And 
speaking of bad-fitting models, what is a good R-square goodness-of-fit value? This, too, is subjective. How good is your 
prediction model, and how accurate is it? Unless you measure accuracy using some statistical procedures for your error 
measurements such as those provided by Risk Simulator (e.g., mean absolute deviation, root mean square, p-values, Akaike 
and Schwartz criterion, and many others) and perhaps input a distributional assumption around these errors to run a 
simulation on the model, your forecasts may be highly inaccurate. 
       Another issue is structural breaks. For example, remember the poor cricket? What happens when you take a hammer 
and smash it? Well, there goes your prediction model! You just had a structural break. A company filing for bankruptcy 
will see its stock price plummet and delisted on the stock exchange, a major natural catastrophe or terrorist attack on a city  
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can cause such a break, and so forth. Structural shifts are less severe changes, such as a recessionary period, or a company 
going into new international markets, engaged in a merger and acquisition, and so forth, where the fundamentals are still 
there but values might be shifted upward or downward.  
       Sometimes you run into a causality loop problem. We know that correlation does not imply causation. Nonetheless, 
sometimes there is a Granger causation, which means that one event causes another but in a specified direction, or 
sometimes there is a causality loop, where you have different variables that loop around and perhaps back into themselves. 
Examples of loops include systems engineering where changing an event in the system causes some ramifications across 
other events, which feeds back into itself causing a feedback loop. Here is an example of a causality loop going the wrong 
way: Suppose you collect information on crime rate statistics for the 50 states in the United States for a specific year, and 
you run a regression model to predict the crime rate using police expenditures per capita, gross state product, 
unemployment rate, number of university graduates per year, and so forth. And further suppose you see that police 
expenditures per capita is highly predictive of crime rate, which, of course, makes sense, and say the relationship is 
positive. If you use these criteria as your prediction model (i.e., the dependent variable is crime rate and independent 
variable is police expenditure), you have just run into a causality loop issue. That is, you are saying that the higher the 
police expenditure per capita, the higher the crime rate! Well, then, either the cops are corrupt or they are not really good 
at their jobs! A better approach might be to use the previous year’s police expenditure to predict this year’s crime rate; that 
is, using a lead or lag on the data. So, more crime necessitates a larger police force, which will, in turn, reduce the crime 
rate, but going from one step to the next takes time and the lags and leads take the time element into account. Back to the 
marketing problem, if you spend more on marketing now, you may not see a rise in net income for a few months or even 
years. Effects are not immediate and the time lag is required to better predict the outcomes.  
       Many time-series data, especially financial and economic data, are autocorrelated; that is, the data are correlated to 
themselves in the past. For instance, January’s sales revenue for the company is probably related to the previous month’s 
performance, which itself may be related to the month before. If there is seasonality in the variable, then perhaps last 
January’s sales are related to the last 12 months, or January of the year before, and so forth. These seasonal cycles are 
repeatable and somewhat predictable. You sell more ski tickets in winter than in summer, and, guess what, next winter you 
will again sell more tickets than next summer, and so forth. In contrast, cyclicality such as the business cycle, the economic 
cycle, the housing cycle, and so forth, is a lot less predictable. You can use autocorrelations (relationship to your own past) 
and lags (one variable correlated to another variable lagged a certain number of periods) for predictions involving 
seasonality, but, at the same time, you would require additional data. Usually, you will need historical data of at least two 
seasonal cycles in length to even start running a seasonal model with any level of confidence, otherwise you run into a 
problem of micronumerosity, or lack of data. Regardless of the predictive approach used, the issue of bad data is always a 
concern. Either badly coded data or just data from a bad source, incomplete data points and data collection errors are always a 
problem in any forecast model.  
       Next, there is the potential for a specification error or using the incorrect econometric model error. You can run a seasonal 
model where there are no seasonalities, thus creating a specification problem, or use an ARIMA when you should be using 
a GARCH model, creating an econometric model error. Sometimes there are variables that are considered nonstationary; 
that is, the data are not well behaved. These types of variables are really not predictable. An example is stock prices. Try 
predicting stock prices and you quickly find out that you cannot do a reasonable job at all. Stock prices usually follow 
something called a random walk, where values are randomly changing all over the place. The mathematical relationship of 
this random walk is known and is called a stochastic process, but the exact outcome is not known for certain. Typically, 
simulations are required to run random walks, and these stochastic processes come in a variety of forms, including the 
Brownian motion (e.g., ideal for stock prices), mean-reversion (e.g., ideal for interest rates and inflation), jump-diffusion 
(e.g., ideal for price of oil and price of electricity), and mixed processes of several forms combined into one. In this case, 
picking the wrong process is also a specification error.   
       In most forecasting methods, we assume that the forecast errors are spherical or normally distributed. That is, the forecast 
model is the best-fitting model one can develop that minimizes all the forecast errors, which means whatever errors that 
are left over are random white noise that is normally distributed (a normal distribution is symmetrical, which means you 
are equally likely to be underestimating as you are overestimating the forecast). If the errors are not normal and skewed, 
you are either overestimating or underestimating things, and adjustments need to be made. Further, these errors, because 
they are random, should be random over time, which means that they should be identically and independently distributed as 
normal, or i.i.d. normal. If they are not, then you have some autocorrelations in the data and should be building an 
autocorrelation model instead.  
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       Finally, if the errors are i.i.d. normal, then the data are homoskedastic; that is, the forecast errors are identical over time. 
Think of it as a tube that contains all your data, and you put a skinny stick in that tube. The amount of wiggle room for 
that stick is the error of your forecast (and, by extension, if your data is spread out, the tube’s diameter is large and the 
wiggle room is large, which means that the error is large; conversely, if the diameter of the tube is small, the error is small, 
such that if the diameter of the tube is exactly the size of the stick, the prediction error is zero and your R-squared 
goodness-of-fit is 100%). The amount of wiggle room is constant going into the future. This condition is ideal and what 
you want. The problem is, especially in nonstationary data or data with some outliers, that there is heteroskedasticity, which 
means that instead of a constant diameter tube, you now have a cone, with a small diameter initially that increases over 
time. This fanning out means that there is an increase in wiggle room or errors the further out you go in time. An example 
of this fanning out is stock prices, where if the stock price today is $50, you can forecast and say that there is a 90% 
probability the stock price will be between $48 and $52 tomorrow, or between $45 and $55 in a week, and perhaps 
between $20 and $100 in six months, holding everything else constant. In other words, the prediction errors increase over 
time.  
       So you see, there are many potential issues in forecasting. Knowing your variables and the theory behind the behavior 
of these variables is an art that depends a lot on experience, comparables with other similar variables, historical data, and 
expertise in modeling. There is no such thing as a single model that will solve all these issues automatically. In “The 
Pitfalls of Forecasting, Part 3,” you will learn more about heteroskedasticity and a few other technical issues. 
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